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to situations in which the model allows only for the effect of
a single nonnull haplotype, effectively comparing this “target”
haplotype with all others. Tests based on such a procedure can
perform very poorly in cases where more than one haplotype
affects disease risk. We feel that the modeling approach is es-
pecially important in just this case, because hypothesis tests for
single haplotype effects are tests of a composite null hypothesis;
such tests require the capacity to estimate relative risk parame-
ters for those haplotypes not constrained by the null hypothesis.
But estimation requires modeling the effects of multiple hap-
lotypes, which appears to go beyond the identifiability results
presented by Lin and Zeng. When interest is limited to models
of a single haplotype, tests can be constructed without much
difficulty that are valid regardless of the distribution of haplo-
types (see, e.g., Schaid et al. 2002; Zaykin et al. 2002). Thus
the identifiability results of Lin and Zeng are most important in
situations where one wishes to estimate the effect of a single
haplotype (relative to all of the others). Can these results actu-
ally be used to analyze real data? The answer to this question
is less clear, because the haplotype distribution parameters may
be only weakly identified in finite samples, especially when the
true parameters are close to the null hypothesis or where the true
risk model is close to dominant (a fact that will not always be
known a priori). Along these lines, we note that in their analy-
ses of the FUSION and simulated data, Lin and Zeng use the
stronger assumption that model 3 is correct.

Finally, some quibbles. Lin and Zeng claim to describe an-
alytical methods for “all commonly used study designs.” In
fact, genetic epidemiologists often use family-based association
studies, such as case-parent trio studies, that are not covered by
Lin and Zeng’s article. Recently, we have developed methods

for fitting haplotype risk models using case-parent trio data that
are robust to misspecification of the parental haplotype distrib-
ution (Allen, Satten, and Tsiatis 2005). We have extended our
approach to include haplotype–covariate interactions, where the
robustness to misspecification of the parental haplotype distri-
bution enables a general dependence of haplotype frequencies
on covariates. These methods are based on the efficient score
function; we are currently studying the application of our ap-
proach to case-control studies. In particular, it appears possible
to remove any dependence of the distribution of H given G in
models with no covariates; given the assumption that Lin and
Zeng were forced to make, this will be of particular interest
should these methods extend to models that include haplotype–
covariate interactions in case-control studies. Another design
also not considered by Lin and Zeng corresponds to conditional
logistic regression of finely stratified data. Here we note that
the retrospective approach of Epstein and Satten (2003) can be
used with highly stratified data because the intercept parameter
is conditioned out; as a result, we can use this approach when
we have a large number of intercept parameters. We have also
developed an extension of the Epstein and Satten approach that
includes covariate effects in addition to haplotype effects (and
their interactions) for matched or highly stratified studies.

In summary, we congratulate Lin and Zeng on an interesting
and stimulating article.
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Lin and Zeng are to be congratulated on an article that de-
scribes identifiability and estimation of haplotype distributions
and risk parameters for very general models, both prospectively
and for case-control studies. In particular, the identifiability
conditions will give important guidance to researchers as they
attempt to use different models for haplotypes besides Hardy–
Weinberg equilibrium (HWE).

Our major aim in this comment is to place Lin and Zeng’s
article in the broader context of various alternative methods for
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haplotype-based regression analysis. We point out the connec-
tions and the differences between these alternative methods, to
shed light on their relative merits. In particular, we note that
in some important subproblems, other methods are available.
These methods are efficient and simple to implement, and they
avoid the need to estimate possibly high-dimensional nuisance
parameters.

1. CASE–CONTROL STUDIES

Because haplotype-based association studies are becoming
increasingly popular, a number of researchers have developed
methods for logistic regression analysis of case-control studies
in the presence of phase ambiguity. The methods can be broadly
classified into two categories: prospective and retrospective.
Before going into technical details, it is useful to understand
the main principles behind these two classes of methods.
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With a slightly different notation than that of Lin and Zeng,
let D be disease status, Hd be the “diplotypes” (i.e., the two
haplotypes an individual carries in his or her pair of homolo-
gous chromosomes), G be the observed genotype, and X be the
nongenetic/environmental covariates. Let the risk function sat-
isfy

logit{pr(D = 1|Hd,X)} = β0 + m(Hd,X, β1), (1)

where m(·) is known but of completely general form.
Under the foregoing notation, the prospective likelihood of

the data is given by pr(D|G,X), which ignores the fact that
under the case-control sampling design, data are observed
on (G,X) conditional on D. In contrast, the retrospective like-
lihood of the data is given by Pr(G,X|D) and accounts for the
underlying case-control sampling design.

When there are no missing data (i.e., G = Hd), it fol-
lows from the well-known results of Prentice and Pyke (1979)
that the prospective approach is actually equivalent to the
retrospective maximum likelihood analysis, provided that the
distribution of the covariates (G,X) is treated completely non-
parametrically. Thus the prospective method is a “robust ap-
proach” for analysis of case-control studies that does not rely
on any assumption about the covariate distribution. In studies
of genetic epidemiology, however, it often may be reasonable
to assume certain parametric or semiparametric models for the
covariate distribution in the underlying source population. The
assumptions of HWE and gene–environment independence are
examples of such models. The retrospective likelihood can di-
rectly incorporate such assumptions into the analysis and can
be much more efficient than the prospective method when the
assumptions are valid (Epstein and Satten 2003; Chatterjee and
Carroll 2005).

1.1 Retrospective Maximum Likelihood Analysis
With Haplotype-Phase Ambiguity

Epstein and Satten (2003) first described the retrospective
maximum likelihood method for haplotype-based association
analysis of case-control studies. Incorporation of nongenetic
covariates X in this method is complicated by the fact that the
retrospective likelihood involves potentially high-dimensional
nuisance parameters that specify the distribution of X in the un-
derlying population. In the gene–environment interaction con-
text, and as in the simulation study and example of Lin and
Zeng, it is often reasonable to assume that Hd and environmen-
tal factors X are independent in the population, with a paramet-
ric form

pr(Hd = hd|X) = pr(H = hd) = q(hd, θ), (2)

where the model q(hd; θ) in turn could be specified according
to HWE or some of its extensions, as considered by Lin and
Zeng. More generally, one can assume a parametric model for
the diplotype distribution of the form

pr(H = hd|X = x) = q(hd, x, θ). (3)

Model (3), for example, can incorporate departure from gene–
environment independence and HWE that may be caused by
“population stratification.” In particular, one could assume

HWE and gene–environment independence conditional on var-
ious demographic factors, such as ethnicity and geographic re-
gions, and specify the haplotype frequencies conditional on
these factors according to a parametric model, such as the
polytomous logistic regression model (Spinka, Carroll, and
Chatterjee 2005). Moreover, (3) potentially can be used to di-
rectly model the association between haplotypes and environ-
mental exposure X.

Under models (2) and (3), Spinka et al. (2005) described sim-
ple and easily computable methods that avoid estimating the
nonparametric marginal distribution of X and exploit the infor-
mation available in (2) or (3) to increase efficiency. Chatterjee,
Kalaylioglu, and Carroll (2005) described similarly simple
methods applicable for family-based or other types of individ-
ually matched case-control studies. Let there be n1 cases and
n0 controls, and let π = pr(D = 1) be the marginal probability
of the disease in the population. Assume the definitions

κ = β0 + log(n1/n0) − log{π/(1 − π)}
and

S(d,h, x,�) = q(h, x, θ)
exp[d{κ + m(h, x, β1)}]

1 + exp{β0 + m(h, x, β1)} ,

where � = (β0, κ, θT, βT
1 )T. Let HG be the set of diplotypes

consistent with the observed genotype G. Define

L∗(D,G,X,�) =
∑

h∈HG
S(D,h,X,�)

∑
h
∑

d S(d,h,X,�)
.

Spinka et al. (2005) first showed that under certain conditions,
which are easily verifiable from the data, all of the parameters
in �, including the intercept parameter β0, are identifiable from
the retrospective likelihood

∏
i Pr(Gi,Xi|Di), as long as the un-

derlying models are specified in such a way that � would be
identifiable from prospective studies. Moreover, the maximum
retrospective likelihood estimate of � can be obtained as a so-
lution of the score equation corresponding to the pseudolikeli-
hood

l∗ =
N∑

i=1

log{L∗(Di,Gi,Xi,�)}. (4)

Spinka et al. described strategies for estimating the regression
parameter β1 based on l∗ for both known and unknown values
of the marginal probability of the disease in the underlying pop-
ulation. If one is also willing to make the rare disease assump-
tion for all Hd and X, then �∗ effectively becomes equivalent to
the method that Lin and Zeng derived in their section A.4.5 un-
der the assumption of gene–environment independence. Note,
however, that neither the rare disease approximation nor the
gene–environment independence assumption is necessary to
derive the simple pseudolikelihood �∗.

An alternative representation of l∗ is very revealing. Con-
sider a sampling scenario where each subject from the under-
lying population is selected into the case-control study using a
Bernoulli sampling scheme where the selection probability for
a subject given his or her disease status D = d is proportional to
µd = Nd/pr(D = d). Let R = 1 denote the indicator of whether
a subject is selected in the case-control sample under the fore-
going Bernoulli sampling scheme. With some algebra, one can



110 Journal of the American Statistical Association, March 2006

now show that the pseudolikelihood l∗ can be expressed in the
form

l∗ =
N∑

i=1

log

{ ∑

hd∈HGi

pr(Di|Hd
i = hd,Xi,Ri = 1)

× pr(Hd
i = hd|Xi,Ri = 1)

}

=
N∑

i=1

log{pr(Di,Gi|Xi,Ri = 1)}. (5)

When no environmental factors are involved, Stram et al. (2003)
proposed an analysis of haplotype-based case-control studies
using an “ascertainment-corrected joint likelihood” of the form∏

i pr(Di,Gi|Ri = 1). The representation of the l∗ given in (5)
suggests that under model (2) or (3) with F(x) treated com-
pletely nonparametrically, the efficient retrospective maximum
likelihood estimate of the haplotype frequency and the regres-
sion parameters can be obtained by conditioning on X in the
approach of Stram et al. (2003).

In most parts of their article, Lin and Zeng considered ret-
rospective maximum likelihood estimation under the model
that assumes Hd and X are independent given G and then
allows the distribution of [X|G] to be completely nonpara-
metric. This model has advantages and disadvantages. It is
more flexible than the model (2) that assumes Hd and X are
independent unconditionally; however, unlike model (3), it
cannot allow direct association between haplotypes and envi-
ronmental/demographic factors. Computationally, retrospective
maximum likelihood assuming model (2) or model (3) com-
pletely avoids estimation of the distribution of the possibly
high-dimensional covariates X. In contrast, under the model
considered by Lin and Zeng, one must estimate the nonpara-
metric distribution of X for each different genotype G, possibly
stratified by subpopulations—a potentially daunting task. Fi-
nally, in situations where the gene–environment independence
assumption is likely to be valid, either in the entire population
or within subpopulations, based on results of Chatterjee and
Carroll (2005) and Spinka et al. (2005), we conjecture that the
retrospective maximum likelihood method assuming model (2)
or model (3) can be much more efficient than that assuming the
model of Lin and Zeng.

1.2 Prospective Methods for Retrospective Data

Lake et al. (2003) described methods for haplotype-based
regression analysis based on the prospective likelihood of the
data (D,G,X), ignoring the true case-control sampling design.
For fixed values of the haplotype-frequency parameter θ , the
score equations for the regression parameters β∗ = (κ,β1) un-
der model (2) corresponding to the prospective likelihood of the
data is given by

0 =
N∑

i=1

∑

hd∈HGi

∂

∂β∗ log{prβ∗(Di|hd,Xi)}

× prβ∗(Di|hd,Xi)q(hd; θ)

×
( ∑

hd∈HGi

prβ∗(Di|hd,Xi)q(hd; θ)

)−1

. (6)

Unfortunately, this purely prospective score equation is bi-
ased under the case-control sampling design, even if the true
haplotype frequencies were known and the underlying HWE
and gene–environment independence assumptions were valid.
However, a simple modification of the prospective score equa-
tion is unbiased,

0 =
N∑

i=1

∑

hd∈HGi

∂

∂β∗ log{prβ∗(Di|hd,Xi)}

× prβ∗(Di|hd,Xi)r�(hd,Xi)q(hd; θ)

×
( ∑

hd∈HGi

prβ∗(Di|hd,Xi)r�(hd,Xi)q(hd; θ)

)−1

,

(7)

where

r�(hd,X) = 1 + exp{κ + m(hd, x, β1)}
1 + exp{β0 + m(hd, x, β1)} .

Spinka et al. showed that with an appropriate rare disease ap-
proximation, the modified prospective estimating equation (7)
is equivalent to the approximate estimating equation approach
proposed by Zhao et al. (2003). Spinka et al. described strate-
gies for estimating β1 and κ based on the modified prospective
estimating equation (7), where the nuisance parameters θ , and
possibly β0, are estimated based on score equation derived from
the pseudolikelihood l∗. Simulation studies show that such a
prospective approach generally tends to be much more robust
to violation of both HWE and the gene–environment indepen-
dence assumption compared with the retrospective maximum
likelihood method (see also Satten and Epstein 2004).

2. COHORT–BASED STUDIES AND THE COX
PROPORTIONAL HAZARDS MODEL

Lin and Zeng admirably describe fully efficient nonpara-
metric maximum likelihood estimation for fitting a general
haplotype-based semiparametric linear transformation model to
cohort studies with unphased genotype data. An alternative esti-
mator considered by Chen, Peters, Foster, and Chatterjee (2004)
and Chen and Chatterjee (2005) for the popular Cox propor-
tional hazard (CPH) model deserves attention. Consider the
CPH model for specifying the hazard function for a subject
given his or her diplotype status (Hd) and environmental co-
variates (X) as

λ[t|Hd,X] = λ0(t)R(Hd,X;β1), (8)

where λ0(t) is the unspecified baseline hazard function, R(Hd,

X;β1) is a parametric function describing the relative risk as-
sociated with the exposure (Hd,X), and β1 is the vector of as-
sociated regression parameters of interest. As before, assume
that Pr(Hd) = q(Hd; θ) is specified according to HWE and that
θ denotes the associated haplotype frequency parameters. The
model (8) cannot be used directly, because Hd is not observable.
Following Prentice (1982), one can derive the hazard function
for disease conditional on the observable genotype data G and
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covariates X in the form

λ[t|G,X] = λ0(t)R
∗{G,X; t, β1, θ,�0(·)}, (9)

where

R∗{G,X; t, β1, θ,�0(·)}
= E{R(Hd,X;β1)|G,X,T ≥ t}

=
∑

Hd∈HG
R(Hd,X;β1)pr[T > t|Hd,X]q(Hd; θ)

∑
Hd∈HG

pr[T > t|Hd,X]q(Hd; θ)
.

In general, standard partial likelihood inference cannot be
performed based on (9), because the relative risk function
R∗{G,X; t, β1, θ,�0(·)} itself depends on the baseline hazard
function λ0(t). However, Chen et al. (2004) showed that an om-
nibus score test for genetic association can be performed using
outputs from standard statistical software for partial likelihood
analysis. Based on (9), Chen and Chatterjee (2005) also de-
scribed alternative strategies for estimation of the risk parame-
ters β1. In particular, the authors observed that for rare disease,
one could assume that pr[T > t|Hd,X] ≈ 1. The corresponding
induced relative risk function,

R∗(G,X;β1; θ) =
∑

Hd∈HG
R(Hd,X;β1)q(Hd; θ)

∑
Hd∈HG

q(Hd; θ)
,

is free of the baseline hazard function λ0(t). Thus, under the
rare disease approximation, one could estimate β by maxi-
mizing the partial likelihood associated with the relative risk
function R∗(G,X;β1; θ̂ ), where θ̂ is a consistent estimate of
the haplotype-frequency parameters θ . Chen and Chatterjee
described alternative strategies for obtaining consistent esti-
mate of θ for cohort and nested case-control studies. A simple
asymptotic variance estimator was also provided. Simulation
studies for the full cohort design show that the loss of efficiency

in this pseudolikelihood method was quite small compared with
the fully efficient nonparametric maximum likelihood estimator
(NPMLE) estimator proposed by Lin (2004).

An advantage of pseudolikelihood approach of Chen and
Chatterjee (2005) is its wide applicability to alternative cohort-
based study designs. In particular, for studies of rare dis-
eases such as cancer, it is common to conduct case-control
or case-cohort sampling within a cohort to select a subset of
people for whom genotype and expensive environmental ex-
posure information will be collected. Various alternative types
of partial likelihoods that are currently available for analy-
sis of nested case-control and case-cohort studies can be ap-
plied to estimate β1 based on the induced relative risk function
R∗(G,X;β1; θ̂ ). Future research is merited to study whether
and how one can obtain the NPMLE for these alternative de-
signs, especially when both genotype and environmental expo-
sure data are available only for the selected subsample of the
subjects. We look forward to Lin and Zeng’s further innova-
tions in this area.
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Comment
Jung-Ying TZENG and Kathryn ROEDER

All data analysis relies on a model that is, strictly speak-
ing, not correct. Choices about which features to model and
which to ignore distinguish successful models from the rest.
Without artful modeling, statisticians would be unable to make
inferences based on finite samples. In this wide-ranging arti-
cle, Lin and Zeng (LZ hereinafter) make novel contributions
to the statistical genetics literature by introducing new mod-
els and providing a rigorous statistical analysis of these mod-
els. Specifically, their article builds on a series of related works
modeling the effect of haplotypes on the risk of disease. We
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congratulate the authors for providing a firm theoretical foun-
dation in this exciting area of research. The authors investigate a
family of models that address a broad range of sampling designs
commonly used in genetic epidemiology, but for brevity we fo-
cus our remarks on those models appropriate to case-control
data.

Schaid et al. (2002) published a practical methodological ap-
proach for haplotype association analysis using a prospective
model to link the risk of disease to observed genetic data. The
chosen model ignored two features of the data: the case-control
sampling scheme that typically generates the data and poten-
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